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METHODS OF SOLVING CONVECTION AND HEAT-TRANSFER PROBLEMS IN 

REGIONS WITH BOUNDARIES THAT VARY IN FORM OVER TIME 

A. P. Ezerskii UDC 532.516 

A method of numerical solution of nonsteady two-dimensional Navier--Stokes equations 
in regions with curvilinear moving boundaries is proposed. As an example, the so- 
lution of the problem of melting with convection in the liquid phase is presented. 

The need to investigate convective problems in regions of complex geometry has given rise 
to a stream of new numerical methods of calculation. At the same time, the question of the 
accuracy of these methods, the minimal calculation time, and the demands which they make re- 
mains to be resolved. For nonsteady problems with varying geometry of the region, the cal- 
culation time is one of the basic factors in selecting the numerical integration scheme. 

Two approaches to the solution of this kind of problem exist: the first is associated 
with the interpolation of the boundary positions with respect to the points of the calcula- 
tion grid and the second with matching the grid lines with the boundaries. As shown in [1], 
because of the large rounding errors associated with the presence of grid points very close 
to the boundary, it is preferable to use the second approach, the more so in that in this 
case the specification of the boundary conditions is considerably simplified. 

A general description of the method of coordinate transformation for conservative and 
nonconservative systems of partial differential equations of first and second order was given 
in [2]. This method was developed in [3] for the problem of heat conduction with a single 
mobile boundary. Extensive results on the use of the method of automatic numerical[ construc- 
tion of a curvilinear coordinate system of general form with grid lines coinciding with all 
the boundaries of a body of arbitrary form were published in [4]. Because of its generality, 
this approach is especially applicable. However, in the case when the boundaries of the re- 
gion change form, additional iterations are necessary at each computational step to recon- 
struct the coordinate system, which may lead to significant increase in the time (i.e., cost) 
of the calculations. 

In the present work, a simple numerical method of solving nonsteady heat- and mass- 
transfer problems in regions with moving curvilinear boundaries is proposed, on the basis of 
transforming the physical region to rectangular form. This transformation is not associated 
with the solution of a system of Poisson equations for the coordinates, i.e., does not re- 
quire additional consumption of computer resources. 

Consider a physical region consisting in the general case of our moving curvilinear 
boundaries (Fig. 1). The corresponding transformed region will have fixed rectilinear bound- 
aries. The coordinate-transformation law is determined in the form 

~_ x - - x ,  Y - - Y 1  
- - - ,  + = (const) t, ( 1 )  

X 2 - - X i  ' Y 2 - - Y i  

where 

and therefore 
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xl  = xl (y,  t), x~ = x2 (y, 0,  

yx = yj (x, 0 ,  g2 = Y2 (x, t), 
(2) 

~ = g ( x ,  y, t), n - - n ( x ,  y, t). ( 3 )  
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Fig. I. Diagram of the physi- ~h/ S 
eal region with moving curvi- 
Iinear boundaries. 
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Fig .  2. Diagram of the 
con t ro l  volume. 

In most practical cases, the boundary coordinates xl, x2, Yl, Y2 are known in advance; 
however, as a rule, they are found to be in a functional dependence on the field variables 
(for examples, temperatures or pressures) and henoe may be determined in the course of cal- 
culation. The elucidation of this dependence is sometimes an independent problem, requiring 
both theoretical and experimental study. 

Nevertheless, for a series of phenomena, this functional dependence may readily be for- 
mulated on the basis of the balance relations at the boundary. Thus, for a large class of 
problems with the presence of phase transition -- known as problems with mobile boundaries 
in the literature [3] -- the position of an individual boundary (for example, x2 in Fig. I) 
may be determined from the energy balance at this boundary. Assuming that all the heat sup- 
plied from the internal phase is absorbed on account of the latent heat of phase transition, 
the following expression may be written 

__~ a T_r = pL ax, [.  (4) 

On at 1~ 

Thus, the position of the necessary boundary becomes unknown immediately after calculation 
in each time layer of the temperature field. 

The initial positions of the boundaries x1(y , to) and so on required for the calculation, 
like the initial distribution of field variables for the nonsteady problem, are either speci- 
fied or are determined on the basis of simplified models or using a preliminary approximate 
series of calculations. 

To write the transfer equations, consider any incompressible liquid conforming to the 
Boussinesq approximation. For a Cartesian coordinate system, these equations may be general- 
ized by the following dependence 

~ ( ~ - -  ~ + ~ )  = r ( ~  + ~yu) + S, (5) 

where e = 0 for the Poisson equation and ~ = I in other cases. 

Replacing the derivatives with respect to x, y, t by the derivatives with respect to 6, 
~, T in Eq. (5) in accordance with the rules of differentiation of complex functions, and 
regrouping the terms, the following equation is obtained, reflecting the distribution of 
over the transformed region 

eTt~ ~ + u ~  + v~n = r [(a~t)~ + 2 ~  + (?~) ,1  + S', (6) 

where 

The con t ro l -vo lume (CV) method is  proposed fo r  the approximat ion  of Eq. (6) ;  i t  has two 
features favorably distinguishing it from other finite-difference methods: on the one hand, 
it allows the terms arising as a result of transformation to be easily interpreted; on the 
other, it ensures the general property of conservation. 
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After simple transformations, the result obtained after integrating Eq. 
(Fig. 2) with the corresponding assumptions [5] is 

ap ~ p  = ae ~ e  + a ~  @ a ~  4- a s ~ s  4- D ~ ( ~ e - - ~ s e - - ~ N ~  4- ~ s ~ )  4- b ~ ,  

where 

(6) over the CV 

(7) 

a~ = s~,A~Arl/AT; bp = a),CI)~, § S~A~A~I; 

ap = as  4- ave q- aN 4- as 4- a~ - -  SpA~A~q; Dp = F[3p/2; 

aE = De 4- max {--  Cs , 0}; au,,. = D~r; 4- max {Cw, 0}; 

aN = DN 4- max {--  CN, 0}; a s = D s q - m a x { C s ,  0}; 

Ce = - -  eJe (~Ne 4- g,N - -  ~se  - -  ~s  )/4 4- (e~t - -  PP)e hrl; 

C w  = - -  sJ~, (~Nr q~N - -  CSU' - -  q~S )/4 4- (S~t - -  FP)~, Arl; 

CN --: San (t~NE -}- I~E - -  I~NW - -  ~w)/4 4- (e~h - -  FQ)~ h~; 

Cs = eJ~ (~se 4- ~ z  - -  ~?sv/ - -  ~w) /4  4- (e~lt - - / Q ) ,  A~. 

I f  Eq. (6)  i s  w r i t t e n  i n  f o r m  a f t e r  i n t e g r a t i o n ,  t h e  p h y s i c a l  m e a n i n g  o f  t h e  c o e f f i c i e n t s  
a p p e a r i n g  t h e r e  i s  e a s i l y  i n t e r p r e t e d .  T h u s ,  Fa ,  FS, FT, a p p e a r i n g  in  t h e  d i f f u s i o n a l  t e r m s  
D, c h a r a c t e r i z e  t h e  i n t e n s i t y  o f  d i f f u s i o n a l  t r a n s f e r  i n  t h e  c o r r e s p o n d i n g  d i r e c t i o n s .  The 
J a c o b i a n  J r e g u l a t e s  t h e  a t t e n u a t i o n  o r  a m p l i f i c a t i o n  o f  t h e  c o n v e c t i v e  c u r r e n t s  in  t h e  t r a n s -  
f e r r e d  CV c e l l .  The d e r i v a t i v e s  ge and  ~ t  may be  i n t e r p r e t e d  a s  p s e u d o e o n v e c t i o n  due t o  mo-  
t i o n  o f  t h e  c o r r e s p o n d i n g  CV b o u n d a r i e s  and t h e  c o e f f i c i e n t s  P and  Q as  p s e u d o c o n v e c t i o n  on 
a c c o u n t  o f  d i s t o r t i o n  o f  t h e  CV b o u n d a r i e s .  

N o t e  t h a t  t h e  c o e f f i c i e n t s  c~ a r e  a l w a y s  p o s i t i v e  (a c o n s e q u e n c e  o f  t h e  a p p l i c a t i o n  o f  
t h e  " c o u n t e r f l o w "  s c h e m e ) ,  and  t h e r e f o r e  t h e  s t a t i c  i n s t a b i l i t y  c h a r a c t e r i s t i c  o f  schemes  
w i t h  c e n t r a l  d i f f e r e n c e s  d o e s  n o t  a p p e a r .  T h i s  i s  t h e  b a s i c  r e a s o n  f o r  c o n s i d e r i n g  a l l  t h e  
c o e f f i c i e n t s  on r and  r as  c o n v e c t i v e  c o m p o n e n t s .  

The u s e  o f  a s o - c a l l e d  e x p o n e n t i a l  scheme o b t a i n e d  f r o m  t h e  a c c u r a t e  s o l u t i o n  f o r  o n e -  
d i m e n s i o n a l  s t e a d y  c o n v e c t i o n  was p r o p o s e d  in  [5] in  o r d e r  t o  o b t a i n  more  a c c u r a t e  e x p r e s s i o n  
for the coefficients a. With the aim of economizing on machine time, the use of the following 
approximate function is recommended 

A (R)  = m a x { 0 ,  (1 - -  0,11RJ)5}. ( 8 )  

The coefficients ~ should take the following form here: 

@ = D i A ( C J D i )  q - m a x { - T - C i ,  0}, i = E ,  N, W,  S. (9) 

The u s e  o f  Eqs .  (8) and (9) i n d i c a t e s  t h a t ,  a t  l a r g e  c o n v e c t i v e  f l u x e s ,  t h e  i n f l u e n c e  o f  
diffusion is negligible. With commensurate magnitudes of the convection and diffusion, the 
contribution of the diffusional term decreases, which leads to attenuation of the influence 
of numerical (spurious) diffusion. The influence of introducing this scheme is discussed 
below. 

Two more satisfactory schemes may be used to solve Eq. (7): the alternating-direction 
method and the successive-relaxation method. In the first case, Eq. (7) breaks down to two 
forms of equations, which are solved by the fitting method [I] 

I I ~ I I  m I I  
- -  as oPle q- ap cDp - -  avecI)w = B 1, - -  aN(I)IN I -[- ap Wp - -  as u,s - B~, ( 1 O) 

where I and II are the first and second directions of fitting. In the second case, with the 
chosen relaxation factor co [I], after determining r directly from Eq. (7) at each point of 
the calculation grid, relaxation occurs 

(I)(p k+') = oq)~ 4- (1 - -  (0) (I)(p h). (1 1) 

Boundary conditions must be considered to close the system of equations. 

Hydrodynamic boundary conditions are specified using vortices and current functions. 
The value of the current function at the boundary is determined by numerical integration of 
the velocity profile through the given physical boundary (for example, the velocity v b through 
AB in Fig. I) 
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Fig. 3. Pattern of current lines and isotherms in the melt 
melt obtained using a special graph-plotting program em- 
ploying linear interpolation; r = 0.02. 

Fig. 4. Comparison of the phase-boundary positions calcu- 
lated using various methods; T = 0.03. 

~b = j %ds. (12) 
A 

With motion of the boundary AB at the velocity ub, the current function is expediently 
expressed in the hypothetical layer b -- I adjacent to the boundary 

% - t  = ~O+l - -  2ubSn. ( 1 3)  

If the condition of slip or symmetry is specified, the corresponding expression for the cur- 
rent function is 

~t,--t = 2~b - -  % + b  ( 14 ) 

After determining the current function at internal points, at the boundaries, and in 
the hypothetical layer, the vortices at the boundaries may be calculated from a finite-dif- 
ference analog of the expression 

I 02 ~ 
~b --  a ~  + ( 1 5 )  

On ~ b Os ~ b 

The boundary conditions for the other variables may be generalized by the dependence 

~ I pl~b Jr_ p~ ~ = q, (16) 
b 

where p and q are the specified constants, which may depend on x, y, t. These aspects of the 
numerical boundary conditions were outlined in [I]. 

As an illustration of the use of the given method, consider free convection in the melt- 
ing of a solid at the melting point around an isothermal vertical wall of height h. The den- 
sity of the two phases is assumed to be the same; the liquid phase conforms to the Boussinesq 
approximation with a constant volume expansion coefficient. The end walls are adiabatic. The 
coordinates of the boundary (Fig. I) are specified in the form Yz = 0, Y2 = h, xz = 0, x2 = 
xf(y, t). Transformation of Eq. (I) leads to the relations 

~= x y 
xf(y, t) ' "q------~, ~ = F o S t e .  ( 1 7 )  

Introducing the Stefan number in dimensionless time allows the parametric dependence on the 
latter to be reduced [6]. The form of the equations describing the process in the physical 
region and the introduction of dimensionless parameters may be found in [6, 7]. 

Numerical calculation was performed on the basis of the Fortran program CONFIX developed 
at the Moscow Power Institute in the Department of Heat- and Mass-Transfer Processes and 
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Apparatus. The sequence of calculation includes the following stages: I) A ~--~ finite-dif- 
ference grid is constructed; the initial values for the vortices and the current function are 
taken to be zero over the whole region, and the initial thickness of the melt is specified, 
so as to avoid unnecessary calculations, from the condition that free convection has no in- 
fluence. Here To and the initial temperature distribution are determined on the basis of the 
classical Stefan solution [8]. 2) In the new time layer, the values of the coordination- 
transformation coefficients are determined on the basis of Eq. (17). 3) The successive- 
relaxation method is used to solve Eq. (7) for dimensionless values of the vortex, the cur- 
rent function, and the temperature. The relaxation factors are I, 1.5, and I. The error in 
all the variables is held less than I%. 4) The values of the vortex are calculated on the 
basis of the condition of adhesion at all the boundaries and the temperature condition at the 
adiabatic ends. The position of the phase-boundary coordinates is determined as a result of 
integrating the heat-flux balance equation -- Eq. (4) -- at the phase boundary 

(x#h) = F + ( -  [1 + ( 8) 

5) Steps 2-4 are repeated until the required time step is reached. 

A uniform 11 • 21 grid was most successfully used; this is explained by the smooth varia- 
tion in the melt thickness over the height. The time step was 5"10 -5 . The calculation time 
on an ES-I033 computer was 40-50 min, on average. 

Some results of the calculation for Ra = 4.5-106 , Ste = I, Pr = I are shown in Figs. 3 
and 4. A general idea of the character of flow and heat transfer at some moment of time may 
be obtained by considering Fig. 3. In the present model, it is assumed that the density of 
the liquid phase decreases with increase in temperature. This leads to upward displacement 
of the heated liquid layers along the warming plate, thereby resulting in a greater melting 
rate in the upper part of the region. This isotherm pattern shows in which zones large tem- 
perature gradients must be expected. This is in complete agreement with the interference dia- 
grams obtained from experiments with the melting of paraffin [9]. The theoretical phase- 
boundary positions are compared in Fig. 4. Curve ~ corresponds to [6], where a simplified 
method was used: in particular, no account was taken of the derivatives (Xf)y, (Xf)yy. The 
characteristic deviations of the phase boundary from the normal close to the ends are asso- 
ciated with the introduction of a hypothetical grid layer for the calculation of the tempera- 
ture at the adiabatic ends, which leads to additionally taking account of the wall heat con- 
duction. Curves b and c correspond to the present work; curve b is characterized by the use 
of Eq. (7) and curve c to the use of Eqs. (8) and (9) additionally. Thus, the introduction 
of the refining coefficients A(R) in the calculation is equivalent to relative increase in the 
contribution of the convective components, as would be expected. 

NOTATION 

x, y, t, physical coordinates; ~, D, T, transformed coordinates; ~, thermal conductivity; 
T, temperature; n, normal to boundary; p, density; L, heat of phase transition; %, generalized 
dependent variable; ~, current function; %, vortex; F, generalized diffusion-transfer coeffi- 
cient; S = S c + Sp%, source term; S', transformed source term; J, ~, B, y, P, Q, transforma- 
tion coefficients; Ci, Di, convective and diffusional components of the finite-difference 
equation; R i = Ci/Di; w, relaxational factor; ds, 3s, elementary area at boundary; h, height 
of warmins wall; xf, coordinate of phase boundary; 8, dimensionless temperature; Fo = ~t/h 2, 
Ste = cAT/L, Ra = g~AThS/~, Pr : ~/~ Fourier, Stefan, Rayleigh, and Prandtl numbers; ~, 
thermal diffusivity; c, specific heat; s difference between wall temperature and melting 
point; g, acceleration due to gravity; 5, temperature-expansion coefficient; ~, kinematic 
viscosity. Indices: n, s, e, w, N, S, E, W, P, CV elements (Fig. 2); x, y, t, ~, ~, T, dif- 
ferentiation with respect to the given variable; b, relation to the grid point at the bound- 
ary; 0, initial; superscripts; O, relation to the previous time layer; k, iteration number. 
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HYDRODYNAMIC INSTABILITY AND REGIMES OF FRAGMENTATION OF DROPS 

A. G. Girin UDC 532.529.6 

Estimates of the dispersal parameters are obtained and an explanation is proposed 
for the mechanism of various types of destruction on the basis of a linear analysis 
of the stability of the surface of a drop. 

The fragmentation of liquid drops and jets by a high-speed gas stream is an important 
process in many industrial installations and can exert considerable influence on the flow 
of gas-drop mixtures. Because of the complexity of the physical phenomena comprising this 
process, fragmentation is studied predominantly by empirical methods, so that it has been 
well investigated experimentally but a complete theoretical model does not yet exist [I, 2], 
preventing one from obtaining reliable estimates of the sizes of the droplets torn off and 
the time of their separation and clarifying the various types of destruction. 

In [3] an attempt was made to give a unified explanation of fragmentation as the mani- 
festation of hydrodynamic instability of the drop surface. In that paper a mathematical model 
of a fragmenting drop was constructed on the basis of a solution of the problem of the stabil- 
ity of an accelerated tangential velocity discontinuity, and it was concluded that the de- 
scription of the phenomenon is adequate, despite the definite quantitative inconsistency. 

Further refinement of the model, connected with an investigation of the inviscid in- 
stability of the interface between two media with the property of continuity of the velocity 
profile inherent to actual fluxes, showed [4] that the model of a tangential discontinuity 
can only serve as a rough approximation, since the decrease in the velocities of the media 
in the boundary layers has a considerable stabilizing action. 

For two-phase systems of the air-water, air--kerosene, etc. type the instability of the 
continuous profile is due to gradient flow of the denser liquid in the boundary layer and is 
described by the dispersion relation for the dimensionless "frequency" z = ~/V i of a dis- 
turbance of the type exp (ihx -- i~t), 

(z--A)[(z--A)(z+AA)+A(I~4)]:(z_AA)[~A3We~ 1 A6gv~~ ~ 1, (1) 
1 

where  A = h6;  A = (1 -- exp ( - - 2 5 ) ) / 2 .  

An analysis of the development of gradient instability under the conditions of the flow 
of a gas stream over a drop is of interest. Below we find the conditions for the appearance 
of instability, estimates of the main characteristics of the destruction are obtained, and 
certain conclusions about the character of the destruction are drawn on this basis. 

First of all we must investigate the vicinity of the rim of the drop (~=~/2), where the 
separation of particles is observed experimentally. Here the influence of acceleration is 
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